Exercise 7

The radius of a spherical ball is increasing at a rate of $2 \mathrm{~cm} / \mathrm{min}$. At what rate is the surface area of the ball increasing when the radius is 8 cm ?

Solution

The surface area of a sphere with radius r is

$$
S=4 \pi r^{2} .
$$

Differentiate both sides with respect to t, using the chain rule on the right side.

$$
\begin{gathered}
\frac{d}{d t}(S)=\frac{d}{d t}\left(4 \pi r^{2}\right) \\
\frac{d S}{d t}=(8 \pi r) \cdot \frac{d r}{d t}
\end{gathered}
$$

The radius is increasing by 2 centimeters per minute, so $d r / d t=2 \mathrm{~cm} / \mathrm{min}$. Therefore, when the radius is 8 cm , the rate that the surface area is increasing is

$$
\left.\frac{d S}{d t}\right|_{r=8}=8 \pi(8)(2)=128 \pi \frac{\mathrm{~cm}^{2}}{\min } .
$$

